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IMPROVING CONSERVATION FOR FIRST-ORDER SYSTEM
LEAST SQUARES FINITE-ELEMENT METHODS∗

J. H. ADLER† AND P. S. VASSILEVSKI‡

Abstract. The first-order system least-squares (FOSLS) finite element method for solving par-
tial differential equations has many advantages, including the construction of symmetric positive
definite algebraic linear systems that can be solved efficiently with multilevel iterative solvers. How-
ever, one drawback of the method is the potential lack of conservation of certain properties. One such
property is conservation of mass. This paper describes a strategy for achieving mass conservation
for a FOSLS system by changing the minimization process to that of a constrained minimization
problem. In addition, an overlapping Schwarz process is used to make this strategy more robust and
not add too much computational overhead to solving the system.
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tion
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1. Introduction. The first-order system least squares (FOSLS) approach is a
finite-element discretization which solves a system of linear partial differential equa-
tions (PDEs) by minimizing the L2 norm of the residual of the PDE [11, 12, 28, 29, 14].
Least-square finite-element methods, in general, have several nice properties and have
been used on a wide variety of problems, e.g. [4, 5, 6, 8, 13, 27, 32]. One advantage
is that they yield symmetric positive definite algebraic systems, which are amenable
to multilevel techniques. This is true for any PDE system, including systems like
Stokes where a mixed finite-element method would yield a saddle-point problem and
an indefinite linear system [9]. Another advantage is that they yield sharp and reliable
a posterior estimates [3]. This is useful for implementing adaptive local refinement
techniques, which allow the approximations to be resolved more accurately in regions
of higher error [10, 17].

A disadvantage of the least-squares methods noted in the literature is a loss of
conservation for certain properties in a given system. For instance, the Stokes’ or
Navier-Stokes’ system contains an equation for the conservation of momentum and
one for the conservation of mass [18, 19]. Since the least-square principle minimizes
both equations equally, both quantities are only conserved up to the error tolerance
given for the simulation. Attempts to improve the conservation of mass would result
in a loss of accuracy in the conservation of momentum. Despite this, in several
applications, conservation of a certain quantity is considered essential to capturing
the true physics of the system. For instance, in electromagnetic problems, such as
magnetohydrodynamics (the treatment of plasmas as charged fluids), loss of accuracy
in the solenoidal constraint of the magnetic field, ∇ ·B = 0, can lead to instabilities
in the system [2, 7].

In this paper, we consider methods for improving the conservation of a divergence
constraint, such as mass conservation, in a system, using the FOSLS finite-element
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method. There are many ways to improve the accuracy of mass conservation in
such systems, including adaptive refinement to increase the spatial resolution of the
discretization [4, 6], higher temporal accuracies or higher-order elements for time-
dependent problems [30], using divergence-free finite-element spaces [5, 1, 15, 16], and
reformulating the first-order system into a more conservative one [21]. In addition,
an alternative approach called FOSLL∗ [25, 26] has been developed, in which an
adjoint system is considered, and the error is minimized in the L2 norm directly. This
has been shown to improve the divergence-constraint conservation in incompressible
fluid flow and electromagnetic problems. In this paper, we discuss an approach that
simply corrects the solution approximated by the FOSLS discretization so that it
conserves the given quantity. The goal is keep the discretization as is, preserving all
of the special properties of the least-squares minimization, while still obtaining the
appropriate conservation. As a result, the a posteriori error estimates and the simple
finite-element spaces can still be used. More specifically, the aim of this paper is to
show that it is possible to conserve a certain quantity in the least-squares finite element
setting by using a local subdomain correction post-processing scheme at relatively
little extra cost.

The paper is outlined as follows. In Section 2, we consider the FOSLS discretiza-
tion applied to a Poisson problem and show how the scheme can result in a type of
“mass loss”. Section 3 investigates a way of transforming the minimization principle
into a constrained minimization problem and investigates what types of constraints
are possible. Next, in Section 4, a local subdomain and coarse-grid correction solver is
used to make the method more robust. This uses an overlapping Schwarz (Vanka-like)
smoother with a coarse grid correction to solve the constrained problem [33, 34, 35].
Finally, concluding remarks and a discussion of future work is given in Section 5.

2. First-Order System Least-Squares. To illustrate the FOSLS finite-element
method, consider a PDE system that is first put into a differential first-order system
of equations, denoted by Lu = f . Here, L is a mapping from an appropriate Hilbert
space, V, to an L2 product space. In many contexts, V is chosen to be an H1 product
space with appropriate boundary conditions.

This minimization is written as

(2.1) u∗ = arg min
u∈V

G(u; f) := argmin
u∈V

||Lu− f ||20,

where u∗ is the solution in an appropriate H1 space. The minimization results in the
weak form of the problem:

Find u∗ ∈ V such that

(2.2) 〈Lu∗, Lv〉 = 〈f, Lv〉 ∀v ∈ V,

where 〈·, ·〉 is the usual L2 inner product on the product space, (L2)k, for k equations
in the linear system. If the following properties of the bilinear form, 〈Lu,Lv〉 are
assumed,

∃ constants, c1 and c2, such that

continuity 〈Lu,Lv〉 ≤ c2||u||V ||v||V ∀ u, v ∈ V,(2.3)
coercivity 〈Lu,Lu〉 ≥ c1||u||2V ∀ u ∈ V,(2.4)
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then, by the Riesz Representation Theorem, this bilinear form is an inner product on
V [24]. In addition, these properties imply the existence of a unique solution, u∗ ∈ V,
for the weak problem (2.2). Here, c1 and c2 depend only on the operator, L, and the
domain of the problem. They are independent of u and v.

Next, u∗ is approximated by restricting (2.1) to a finite-dimensional space, Vh ⊆
V, which leads to (2.2) restricted to Vh. Since Vh is a subspace of V, the discrete
problem is also well-posed. Choosing an appropriate basis, Vh = span{Φj}, and
restricting (2.2) to this basis, yields an algebraic system of equations involving the
matrix, A, with elements

(A)ij = 〈LΦj , LΦi〉.

It has been shown that, in the context of a symmetric positive definite (SPD) H1-
equivalent bilinear form restricted to a finite element subspace, a multilevel technique
exists that yields optimal convergence to the linear system [12].

2.1. Sample Problem and Loss of Conservation. To illustrate possible
losses in conservation, consider the convection-diffusion equation for unknown p in
two dimensions,

(2.5) −∇ ·D∇p + r · ∇p + cp = f,

with D an SPD matrix that could depend on the domain and r a vector and c a
positive constant, respectively. In order to make the system first-order, a new variable,
u = D∇p, is introduced. The resulting FOSLS system becomes,

−∇ · u + D−1r · u + cp = f,(2.6)
∇×D−1u = 0,(2.7)

D−1/2u−D1/2∇p = 0.(2.8)

Here, a scaling on D is performed to allow the resulting discrete system to be
better conditioned and, thus, more amenable to multigrid methods. Also, the extra
curl equation is introduced so that the weak system is continuous and coercive and,
therefore, H1 equivalent [11, 12]. For simplicity, let D = 1, r = 0, and c = 0. Then,
the following functional is minimized,

G = ||∇ · u + f ||20 + ||∇ × u||20 + ||u−∇p||20.

The resulting discrete system is

AU = b,

where U = (u, p)T . When minimizing this functional, equal weight is given to each
term in the system. Therefore, if better accuracy is needed on a certain term, such as
the divergence constraint, accuracy is lost in the other portions. In many applications,
however, exact conservation of certain terms is important for developing an accurate
model of a physical system. For instance, one may want to conserve the “mass” of
the system. This is defined as

(2.9)
∫
Ω

−∇ · u dΩ =
∫
Ω

f dΩ.
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In other words, the amount of flow in or out of the system is equal to the flow
contributed by the source (this is has more physical meaning in a system like Stokes,
where we assume ∇ ·u = 0 [18]). However, since the part of the functional concerned
with this property is only minimized to a certain degree (i.e., truncation error of
the scheme at best), this can not be satisfied exactly. Another issue concerns the
fact that in many applications of the FOSLS finite-element method the same order
of polynomials is chosen as the basis for every unknown in the discrete space. For
instance, linear functions are chosen to approximate both u and p. As a result, in
trying to satisfy the term u−∇p = 0, one is trying to match linears with the gradient
of linears, or constants. This is not approximated very well and accuracy is lost. As
a result the conservation property is also lost. Choosing higher-order elements does
remedy this to some extent, especially in two dimensions. However, using higher-
order elements increases the complexity of the discrete system and the grid-hierarchy
in a multigrid scheme, making the systems harder to solve. In addition, the effect of
higher-order elements is lessened when going to three dimensions [20, 22, 30].

To improve on this, here, the idea of adding the mass conservation as a constraint
to the system is considered. Thus, instead of just minimizing the FOSLS functional,
the functional is minimized subject to a constraint. This constraint enforces the
desired mass conservation, while still allowing the FOSLS functional to be minimized
as usual, thus retaining its nice properties. Next, several approaches for implementing
this constraint are described.

3. Constrained FOSLS. To enforce the constraint mentioned above, a La-
grange multiplier, λ, is introduced and the FOSLS system is augmented as follows:

(3.1)
(

A CT

C 0

) (
U
λ

)
=

(
b
g

)
.

Here, A and U are as before for the FOSLS discretization, λ is the Lagrange multi-
plier, and C is a finite-element assembly of the constraint, in this example −∇·u = f .
Two possible ways to construct C are considered. For the rest of the paper, we con-
sider a triangulation of a mesh in two dimensions, Th, with grid spacing h. In addition,
consider the polynomial spaces of order k defined on this triangulation as, Pk. The
following notation is used for matrices and spaces:

Definition 3.1. Let Φj ∈ [Pk1 ]
2 be a vector. Let qi ∈ Pk2 and ri ∈ ∇ · [Pk1 ]

2 be
scalars. Then define the following matrices:

B̃ij = 〈−∇ · Φj , qi〉,

Λ ⇒ Λij = 〈−∇ · Φj ,−∇ · Φi〉,

and right-hand sides:

g̃ = 〈f, qi〉, g = 〈f,−∇ · Φi〉.

3.1. “Galerkin Constraint”. Letting C = B̃, a standard Galerkin-type con-
struction of the divergence constraint is obtained. It should be noted that the order of
the polynomials for the constraints, k2, can be different than the order for the FOSLS
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unknowns, k1, and, in fact, should be chosen to have less degrees of freedom so as not
to over-constrain the system. The pairs chosen in this paper are quadratics-linears
(P2 − P1), quadratics-constants (P2 − P0), and linears-constants (P1 − P0). In this
context, U ∈ [Pk1 ]

3 and λ ∈ Pk2 . The resulting system is:

(3.2)
(

A B̃T

B̃ 0

) (
U
λ

)
=

(
b
g̃

)
.

3.2. “Least-Squares Constraint”. To keep faith with the FOSLS methodol-
ogy, a constraint is proposed that is of the same form as that is used in the FOSLS
discretization, namely, letting C = Λ. This allows the same finite-element spaces for
the FOSLS unknowns to be used for the Lagrange multiplier. The system is then,

(3.3)
(

A Λ
Λ 0

) (
U
λ

)
=

(
b
g

)
,

where U ∈ [Pk1 ]
3 and λ ∈ [Pk1 ]

2.
As is shown below, the system that needs to be solved in the least-squares con-

straint approach may not be well-conditioned. However, one can construct the con-
straint matrix C in such a way that it can be decomposed into a form which is much
easier to solve. For instance, decompose Λ = BT B (and, thus, the system is rewritten
as

(3.4)
(

A BT B
BT B 0

) (
U
λ

)
=

(
b
g

)
.

However, the construction of B is not trivial in many cases (see, however, subsection
3.3.1) and it is easier to work with B̃ instead. If the system in the “Galerkin” approach
is taken and modified, the following is obtained:

(3.5)
(

A B̃T B̃

B̃T B̃ 0

) (
Ũ
λ̃

)
=

(
b

B̃T g̃

)
.

As it turns out, due to the following lemma, it is reasonable to solve system (3.5)
instead of system (3.4).

Lemma 3.2. Consider systems (3.2) and (3.5). Let A, B̃, U , λ, λ̃, g, and g̃ be
all defined as above in Definition 3.1, then,

λ̃ = B̃λ and Ũ = U .

Proof. First combine the two systems,

AU + B̃T λ = f,(3.6)
B̃U = g̃,(3.7)

AŨ + B̃T B̃λ̃ = f,(3.8)
B̃T B̃Ũ = B̃T g̃.(3.9)

Next, multiply equation (3.7) on the left by B̃T and subtract the bottom two equations
from the top two. Let eU = U − Ũ and eλ = λ− B̃λ̃ to obtain,

AeU + B̃T eλ = 0,

B̃T B̃eU = 0.
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Since B̃T is equivalent to a gradient operator, it can be shown that it is a one-to-one
operator (since divergence and, thus, B̃ is onto). Therefore, B̃eλ = 0 and the system
becomes, (

A B̃T

B̃ 0

) (
eU
eλ

)
=

(
0
0

)
,

which is the global “Galerkin” system, which is known to be invertible. As a result,
eU = eλ = 0 and, more importantly, U = Ũ , meaning solving either system results in
the same solution.

Therefore, (3.2) and (3.5) are both viable options for the constraint system. Next,
each of these and some variations are tested to see which yield the best mass conser-
vation with little extra computational work.

3.3. Solvers. To solve the constrained system, the conjugate-gradient (CG)
method on the Schur complement is used [31]. Solving the system in this way yields
the following set of equations:

U = A−1b−A−1CT λ,

CA−1CT λ = CA−1b− g.

The second equation is solved for λ via CG and a backsolve is used to get the original
U . For the results presented here, a direct solver is used to compute A−1, but in the
future a multigrid solver, or whatever is used to solve the FOSLS system itself, will
be substituted instead.

For the first-approach (3.2) and second (3.3) the system is solved exactly as de-
scribed above. In the second approach, Λ = BT B, where B represents the construc-
tion of 〈−∇ · Φj , ri〉, but where r = ∇ · Φ is in the divergence of the space used for
A, i.e ∇ ·Pk1 as opposed to the full Pk2 . As a result, the Schur complement equation
becomes

(3.10) BT BA−1BT Bλ = BT BA−1b− g.

This is badly conditioned as the system BT B is equivalent to a −∇∇· equation.
However, to remedy this, the equation is multiplied on the left by BA−1, resulting in

(BA−1BT )(BA−1BT )Bλ = (BA−1BT )BA−1b− (BA−1)g.

Notice that BBT is equivalent to a −∇ · ∇ or Laplace system and thus, BA−1BT is
well-conditioned. In addition, one only needs to solve for Bλ. This system simplifies
further by eliminating one of the BA−1BT blocks to obtain,

(3.11) (BA−1BT )Bλ = BA−1b− (BA−1BT )−1BA−1g.

However, in (3.11), two solves of BA−1BT are required, increasing the number of
iterations required to solve the system.

In addition, a problem with this approach is the construction of B. A simpler
way is to construct B̃ and use this instead to get system (3.5). This results in

(3.12) B̃T B̃A−1B̃T B̃λ = B̃T B̃A−1b− B̃T g̃.
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Multiplying on the left by B̃A−1 yields

(B̃A−1B̃T )(B̃A−1B̃T )B̃λ = (B̃A−1B̃T )B̃A−1b− (B̃A−1B̃T )g̃

(3.13) (B̃A−1B̃T )B̃λ = B̃A−1b− g̃.

This, however, is the same system obtained from (3.2) and, as shown in Lemma 3.2,
results in the same solution for U .

3.3.1. Construction of B. Despite being able to use the simpler construction,
B̃, it is possible to construct B for the type of constraint considered here, ∇·u = f . In
fact, the matrix B is constructed locally using the simpler construction of B̃. Consider
an element (triangle) T and let [Pk1 ]

2(T ) be the vector polynomials of degree k1. Next,
consider the “Least-Squares” constraint, where the space of Lagrange multipliers, λ, is
∇·[Pk1 ]

2(T ), which is a subspace of [Pk1−1](T ). Let {ϕs}l
s=1 be the basis (restricted to

T ) of [Pk1−1](T ). For k1 = 2, l = 3 (since [Pk1−1](T ) = [P1](T ) – the space of linears).
Also, let {Φi}n

i=1 be the basis of [Pk1 ]
2(T ). Since ∇·Φi ∈ ∇ · [Pk1 ]

2(T ) ⊂ [Pk1−1](T ),

(3.14) ∇ · Φi =
l∑

s=1

ci,sϕs = [ϕ1, . . . , ϕl]ci,

for some coefficients ci = (ci,s) ∈ Rl. Therefore,(
B̃T

)
i,s

= (∇ · Φi, ϕs) = [(ϕs, ϕ1), . . . , (ϕs, ϕl)]ci = eT
s Mci.

Here, es ∈ Rl is the sth unit coordinate vector and M = MT is the element mass
matrix coming from the space [Pk1−1](T ). In conclusion, the element matrix B̃ =
B̃T = ((∇ · Φi, ϕs))1≤i≤n, 1≤s≤l admits the following form

B̃T = MT [c1, c2, . . . , cn].

For the entries (∇ · Φi, ∇ · Φj) = (BT
T BT )ij , using the representation (3.14) yields

(BT
T BT )ij = (∇ · Φi, ∇ · Φj) = cT

j ((ϕr, ϕs))
l
r,s=1 ci = cT

j MT ci =
(
B̃T

T M−1
T B̃T

)
ij

.

Therefore,

BT = M
− 1

2
T B̃T .

Thus, B is constructed relatively easily. Namely, over each element the local matrix,
B̃T , is built, which is the Galerkin finite-element construction of the divergence oper-
ator using Pk1 − Pk1−1 elements. Then, BT = M

−1/2
T B̃T , where M

−1/2
T is the mass

matrix associated with the given element and Pk1−1.

3.4. Numerical Results. In the following numerical tests, four approaches are
considered:

• Method 1: Solve the “Galerkin” constraint system, (3.2), resulting in (3.13).
Note, that this is the same as solving System (3.5) and simplifying the Schur
complement system.

• Method 2: Solve the “Least-Squares” constraint system, (3.3), resulting in
(3.10).
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• Method 3: Solve the “Least-Squares” constraint system using the simpler
construction, (3.5), resulting in (3.12).

• Method 4: Solve the “Least-Squares” constraint system, (3.4) with the sim-
plified Schur complement system, (3.11).

Again, D = 1, r = 0, and c = 0. The right-hand side is chosen as f =
2π2 sin(πx) sin(πy) so that the true solution is p = sin(πx) sin(πy). The problem is
solved on a unit square with homogeneous Dirichlet boundary conditions for p. The
system is solved using the four approaches described above for a combination of the
finite-element spaces, P2, P1, and P0. The L2 norms of the errors of the solutions,
p and u = ∇p, are shown in the following tables. Here, uerr = ||u − u∗||0/||u∗||0
and perr = ||p− p∗||0/||p∗||0 for the constrained system, where u∗ and p∗ are the true
solutions. The FOSLS functional, F = ||LU−f ||0, is given for both the unconstrained
system, F , and the constrained system, Fc. In addition, the mass conservation (or
mass loss) is shown as

mL =

∣∣∣∣∣∣
∫
Ω

−∇ · u− f dΩ

∣∣∣∣∣∣ ,

for the unconstrained FOSLS system as well as with the constraint, mc
L. Finally, the

number of iterations, it, needed in the CG algorithm to reduce the algebraic residual
by 10−8 are shown.

k1 k2 h mL mc
L F Fc uerr perr it

1 0 1/16 2.8e-2 4.9e-11 0.90 1.12 0.181 0.015 113
1 0 1/32 1.0e-2 2.9e-11 0.48 0.86 0.181 0.004 232
2 0 1/16 3.7e-5 5.7e-14 3.7e-2 3.7e-2 1.16e-3 1.40e-4 4
2 0 1/32 2.4e-6 3.0e-14 9.5e-3 9.5e-3 1.82e-4 1.73e-5 2
2 1 1/16 3.7e-5 1.9e-13 3.7e-2 3.7e-2 1.12e-3 1.38e-4 13
2 1 1/32 2.4e-6 3.4e-14 9.5e-3 9.5e-3 1.81e-4 1.72e-5 7

Table 3.1: (Method 1) Solve B̃A−1B̃T λ = B̃A−1b − g̃. This approach is equiva-
lent to using the “Galerkin” approach, (3.2), and the “Least-Squares” approach plus
simplification of the Schur complement system on B̃, (3.5).

k1 k2 h mL mc
L F Fc uerr perr it

1 1 1/16 2.8e-2 5.1e-12 0.90 1.12 0.181 0.015 1,730
1 1 1/32 1.0e-2 2.1e-13 0.48 0.86 0.181 0.004 20,375
2 2 1/16 3.7e-5 1.5e-11 3.7e-2 9.8e-2 0.012 1.38e-4 1,100
2 2 1/32 2.4e-6 1.7e-12 9.5e-3 4.8e-2 4.94e-3 1.72e-5 4,319

Table 3.2: (Method 2) Solve ΛA−1Λλ = ΛA−1b − g. This approach is equivalent to
using the “Least-Squares” approach, but without splitting the constraint matrix and
solving the full Schur complement system, (3.3).

3.5. Discussion. A couple of things to note are the fact that the first test yields
some of the most optimal results. Method 2 attempts to solve the ill-conditioned ∇∇·
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k1 k2 h mL mc
L F Fc uerr perr it

1 1 1/16 2.8e-2 2.8e-12 0.90 1.12 0.181 0.015 1,600
1 1 1/32 1.0e-2 2.9e-11 0.48 0.86 0.181 0.004 15,268
2 1 1/16 3.7e-5 9.3e-13 3.7e-2 3.7e-2 1.16e-3 1.40e-4 15
2 1 1/32 2.4e-6 7.5e-14 9.5e-3 9.5e-3 1.82e-4 1.73e-5 4
2 2 1/16 3.7e-5 5.9e-14 3.7e-2 3.7e-2 1.15e-3 1.38e-4 12
2 2 1/32 2.4e-6 7.3e-14 9.5e-3 9.5e-3 1.81e-4 1.72e-5 6

Table 3.3: (Method 3) Solve B̃T B̃A−1B̃T B̃λ = B̃T B̃A−1b − B̃T g̃. This approach is
equivalent to using the “Least-Squares” approach with the simpler construction of
the constraint, but without splitting the constraint matrix and solving the full Schur
complement system, (3.5).

k1 k2 h mL mc
L F Fc uerr perr it

1 1 1/16 2.8e-2 1.3e-10 0.90 1.12 0.181 0.015 84+134
1 1 1/32 1.0e-2 7.8e-10 0.48 0.86 0.181 0.004 146+307
2 2 1/16 3.7e-5 5.1e-10 3.7e-2 9.8e-2 0.012 1.38e-4 72+101
2 2 1/32 2.4e-6 1.7e-9 9.5e-3 4.8e-2 7.73e-3 1.72e-5 124+198

Table 3.4: (Method 4) Solve ΛA−1Λλ = ΛA−1b − b. This approach is equivalent to
using the “Least-Squares” approach, and using the simplification of the full Schur
complement system using B, (3.11). Note, that since two solves of BA−1BT are
required, the iterations for both solves are displayed in the last column of the table.

like system and, as is shown, requires too many iterations to be used reliably. Methods
3 and 4 improve on this, however, as they require extra solves in the solution process
they require more work than in the first case.

In addition, only when a stable pair of elements with the constraint is used (i.e.
P2 − P0 or P2 − P1) are the optimal results obtained. This results from the fact
that only for the stable combinations is there enough room to minimize the FOSLS
functional. All cases yield improved conservation as this is enforced directly. However,
for the unstable pairings as the constraint is enforced, only a few possible solutions
are allowed and, as a result, when the FOSLS functional is minimized, there is no
longer enough room to minimize certain terms in the functional any more (such as
u−∇p = 0). Thus, the best u is not found. The solution has better mass conservation,
but the approximation is not necessarily capable of minimizing the FOSLS functional.
This can be seen by looking at the reduction in the error of u. In all cases, the solution,
p, is approximated well and the error is reduced with h as expected. However, for the
unstable pairs, the gradient, u, is not approximated well. Thus, the functional is no
longer estimating the H1 error accurately and the a posteriori error estimator is lost.
Therefore, the conclusion is that the constraint always needs to be chosen from a space
which gives a stable finite-element pair with whatever unknowns from the FOSLS
system that you wish to conserve. This requires considering an inf-sup condition for
the FOSLS unknown and Lagrange multiplier pairs, but in many applications these
pairs of spaces are well-known.

Alternatively, we may use for the constraints, test functions from a coarse sub-
space of a space that generally may not provide a stable fine–grid pair. For instance,
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if the constraint matrix, B̃, is constructed using the “Galerkin-like” approach using
the same polynomial space as the FOSLS system, the finite-element pairs are not
stable. However, if this operator is restricted to a coarser space, H, and the Lagrange
multiplier, λH , is chosen in that coarser space, stability is regained (assuming the
coarse space is “coarse enough”). In the following results, this is tested using linears
and quadratics. An interpolation operator is constructed via standard finite-element
interpolation, QH , which takes DOF from a grid of size H and interpolates it to the
fine-grid, h. Thus, the constrained system becomes,

(3.15)
(

A B̃T QH

QT
HB̃ 0

) (
U
λH

)
=

(
b

QT
H g̃

)
.

k1 k2 h H mL mc
L F Fc uerr perr it

1 1 1/8 1/4 5.3e-2 1.9e-12 1.65 1.70 0.222 0.056 21
1 1 1/16 1/8 2.8e-2 9.0e-12 0.90 0.91 0.132 0.013 27
1 1 1/16 1/4 2.8e-2 3.0e-11 0.90 0.90 0.134 0.015 17
1 1 1/32 1/16 1.0e-2 6.6e-13 0.48 0.48 0.053 0.003 25
1 1 1/32 1/8 1.0e-2 7.1e-12 0.48 0.48 0.053 0.004 17
1 1 1/32 1/4 1.0e-2 4.0e-12 0.48 0.48 0.053 0.004 13
2 2 1/8 1/4 5.5e-4 1.5e-11 0.14 0.15 0.008 0.001 31
2 2 1/16 1/8 3.7e-5 7.0e-13 3.7e-2 3.9e-2 1.10e-3 1.88e-4 28
2 2 1/16 1/4 3.7e-5 8.6e-13 3.7e-2 3.8e-2 1.11e-3 1.39e-4 22
2 2 1/32 1/16 2.4e-6 4.6e-13 9.5e-3 9.9e-3 1.79e-4 3.69e-5 22
2 2 1/32 1/8 2.4e-6 7.5e-14 9.5e-3 9.6e-3 1.79e-4 2.32e-5 17
2 2 1/32 1/4 2.4e-6 9.4e-14 9.5e-3 9.5e-3 1.80e-4 1.83e-5 16

Table 3.5: (Alternative Approach) Solve (3.15), where QT
HB̃ is the “Galerkin” con-

straint on a coarser mesh.

As is seen in Table 3.5, using P1 −P1 and P2 −P2 pairs yields conservation and
still allows the FOSLS functional to be minimized as expected. Thus, the solution,
p, and it’s gradient, u, are approximated well with only a handful of extra iterations
needed.

4. Locally Constrained FOSLS Correction.

4.1. Overlapping Schwarz corrections. Now, that is has been shown that
augmenting the FOSLS system with a constraint gives better mass conservation with
only a few extra iterations, a more robust local way of solving the problem is described
here. An overlapping Schwarz process, as described in [35] (Section 9.5), is considered
to break the constrained problem into smaller local problems. First consider that
the FOSLS discrete system has been solved. In other words, no constraints are yet
imposed. Then, the following post-processing step is performed. Let {Ωi} be an
overlapping partition of Ω into mesh subdomains (i.e., each Ωi is a union of fine-grid
elements). Then correct the current solution U with

Ui ∈ V 0
h (Ωi) =

{
v ∈ Vh : supp (vi) ⊂ Ωi

}
,



Conservation for FOSLS 11

by solving the locally constrained minimization problem for Ui ∈ V 0
h (Ωi) and λi ∈

Ri = ∇ · V 0
h (Ωi) posed in Ωi:

a(U + Ui, vi) + (λi, ∇ · vi) = (F, vi), for all vi ∈ V 0
h (Ωi),

(∇ · (U + Ui), ϕ) = (f, ϕ) for ϕ ∈ Ri.

Here, for the local space Ri ≡ ∇ · V 0
h (Ωi), the local systems can be constructed as in

Section 3.3.1. Likewise, a computational basis, based on QR or SVD, can be obtained
as well. This is feasible if the domains Ωi are relatively small. Next, set U := U + Ui

and move onto the next subdomain Ωi+1.
After several loops over the Schwarz subdomains, a global coarse–space correction

is performed. For this, a coarse space, RH ⊂ ∇·Vh, is needed with an explicit locally
supported basis such that the pair (Vh, RH) is L.B.B.-stable. Alternatively, based
on a coarse space, VH ⊂ Vh, and coarser subdomains, {ΩH

i } (i.e., union of coarse
elements in TH), for the current approximation U ∈ Vh, local coarse-space corrections,
UH

i ∈ V 0
H(ΩH

i ) = {vH ∈ VH : supp (vH) ⊂ Ω
H

i }, are obtained by solving the local
saddle–point problems for UH

i ∈ V 0
H(Ωi) and λH

i ∈ RH
i = ∇ · V 0

H(ΩH
i ) posed in ΩH

i :

a(U + UH
i , vH

i ) + (λH
i , ∇ · vH

i ) = (F, vH
i ), for all vH

i ∈ V 0
H(ΩH

i ),
(∇ · (U + UH

i ), ϕ) = (f, ϕ) for ϕ ∈ RH
i .

Here, the coarse spaces can be constructed in a variational way by using standard
interpolation and restriction operators for polynomial finite-element spaces. Finally,
let U := U +UH

i and move onto the next coarse subdomain ΩH
i+1. The process can be

applied recursively in a V –cycle iteration exploiting the above constrained overlapping
Schwarz (Vanka–like) smoothing corrections [34]. For this paper, however, we consider
only a two-level method with one global coarse space.

4.2. Numerical Results. To test the scheme described above in section 4.1,
the “Galerkin”-like constrained system, (3.2), is considered on subdomains and a
coarse-grid. This system gave the most optimal results (fewer iterations and better
mass conservation) and, therefore, appears to be the natural choice for performing
the subdomain corrections. As described above, the standard FOSLS system is solved
yielding, U0. Next, the finite-element triangulation of Ω is divided into overlapping
subdomains, Ti of Ωi. The restriction of the FOSLS system, A, and the constraint
equation, B̃, is formed by a simple projection onto the subdomains giving, Ai =
PT

i APi and Bi = QT
i B̃Pi. Here, Pi and Qi are the natural injection operators of

DOFs on Ti to the original mesh, T , for elements of Pk1 and Pk2 , respectively. Then,
on each subdomain the Schur complement system of the error equations is solved as
described above in section 4.1. Once all corrections on subdomains are updated, the
system is projected onto a coarse grid, TH , where an update is again solved for. We
use the standard finite-element interpolation operators to move between a coarse grid
of size H to a fine grid of size h. We define these as PH for Pk1 and QH for Pk2 .
Note, that PH is a block matrix of interpolation operators for each unknown in the
FOSLS system. The transposes are used as restriction operators from fine grid to
coarse grid. The algorithm is described below, letting Ms be the maximum number of
subdomain smoothing steps and Nsd being the number of overlapping subdomains:



12 ADLER, VASSILEVSKI

Solve FOSLS System: AU0 = b.
Compute Residuals: rA = b−AU0 and rB = g̃ − B̃U0.
Set U = U0 and λ = 0.
Perform Subdomain Smoothing Steps:
for s = 1 to Ms do

for i = 1 to Nsd do
Restrict Matrices and Residuals to Subdomains.

Solve:
(

Ai BT
i

Bi 0

) (
Ui

λi

)
=

(
PT

i rA

QT
i rB

)
.

Update: U = U + PiUi and λ = λ + Qiλi.
Recompute Residuals: rA = b−AU − B̃T λ and rB = g̃ − B̃U0.

end
end
Perform Coarse-Grid Correction:

Solve:
(

PT
HAPH PT

HB̃T QH

QT
HB̃PH 0

) (
UH

λH

)
=

(
PT

HrA

QT
HrB

)
.

Update: U = U + PHUH .

The results for P2−P0 and P1−P0 pairs of elements for the FOSLS solution and
the constraint variable are given in Table 4.1 using various grid spacings. The first set
of results is given for the original FOSLS system with no constraint correction. The
FOSLS functional is reduced by hk1 as expected and it gives a good approximation of
the reduction in error for both u and p. However, the mass loss is rather large. Using
quadratics improves the results but not exactly. The remaining blocks of data give
the results using various numbers of smoothing steps and with or without coarse-grid
corrections. In all cases, using P2 − P0 elements gives much better results. As seen
in Tables 3.1-3.2, mass conservation is obtained, and the FOSLS functional is still
minimized, retaining its error approximation properties. Moreover, using unstable
pairs of elements can even result in the divergence of the FOSLS functional. In the
context of this problem, the solution is still obtained accurately, but the gradient of
the solution is not captured well. The solution process is no longer minimizing the
residual in the H1 norm.

In addition, the results show that the use of a coarse-grid improves the perfor-
mance of the method. The second block in Table 4.1 shows results for performing
one smoothing step of the subdomain solver with no coarse-grid correction. This does
improve the conservation results, but not significantly. Performing 100 smoothing
steps of the subdomain solver with no coarse-grid correction improves the mass con-
servation, but of course these iterations are expensive. Finally, the fourth set shows
results for using one step of the subdomain solver with one solve on a coarse-grid.
The mass conservation is retained and not much work is needed. Combining with the
results from Table 3.1, this process requires around 4 iterations of MINRES for each
local subdomain and for the coarse-grid. Each of these subdomains has less DOFs
and, therefore, the work required to solve the constrained system there is a fraction
of the cost of solving the original FOSLS system.

5. Conclusions. In summary, the results of this paper have shown that proper-
ties such as mass conservation can be obtained using the least-squares finite element
method and a post-process subdomain correction method. There are many other
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P1 − P0 P2 − P0

1/h FOSLS
mL F uerr perr mL F uerr perr

8 5.3e-2 1.65 0.223 0.070 5.5e-4 0.14 8.3e-3 1.2e-3
16 2.8e-2 0.90 0.134 0.019 3.7e-5 0.04 1.1e-3 1.4e-4
32 1.0e-2 0.48 0.053 0.005 2.4e-6 0.01 1.8e-4 1.7e-5

1/h Nsd = 9, Ms = 1, No Coarse Grid correction
mL F uerr perr mL F uerr perr

8 2.6e-3 1.77 0.180 0.061 2.3e-6 0.14 8.4e-3 1.2e-3
16 1.3e-3 1.09 0.185 0.016 1.0e-7 0.04 1.2e-3 1.4e-4
32 2.9e-5 1.47 0.201 0.004 9.2e-9 0.01 1.8e-4 1.7e-5

1/h Nsd = 9, Ms = 100, No Coarse Grid correction
mL F uerr perr mL F uerr perr

8 4.2e-12 1.83 0.184 0.059 1.0e-11 0.14 8.4e-3 1.2e-3
16 4.7e-8 1.12 0.181 0.015 9.1e-11 0.04 1.2e-3 1.4e-4
32 2.2e-1 7.81 0.413 0.005 4.5e-11 0.01 1.8e-4 1.7e-5

1/h Nsd = 9, Ms = 1, H = 2h
mL F uerr perr mL F uerr perr

8 8.8e-11 1.83 0.181 0.060 2.3e-13 0.14 8.3e-3 1.2e-3
16 1.3e-12 1.92 0.188 0.015 1.2e-13 0.04 1.2e-3 1.4e-4
32 1.1e-10 10.09 0.209 0.004 2.5e-14 0.01 1.8e-4 1.7e-5

1/h Nsd = 9, Ms = 1, H = 4h
mL F uerr perr mL F uerr perr

8 5.3e-3 1.84 0.191 0.060 1.2e-6 0.14 8.3e-3 1.2e-3
16 1.2e-3 1.20 0.186 0.016 1.8e-8 0.04 1.2e-3 1.4e-4
32 2.8e-4 2.63 0.200 0.004 3.0e-9 0.01 1.8e-4 1.7e-5

1/h Nsd = 9, Ms = 10, H = 4h
mL F uerr perr mL F uerr perr

8 3.9e-4 1.83 0.195 0.060 1.1e-7 0.14 8.3e-3 1.2e-3
16 4.0e-3 1.29 0.192 0.015 7.8e-9 0.04 1.2e-3 1.4e-4
32 4.3e-2 9.93 0.363 0.007 6.7e-10 0.01 1.8e-4 1.7e-5

Table 4.1: Mass loss, least-squares functional, and relative errors of solutions for
P1 − P0 elements (Left) and P2 − P0 elements (Right).

methods, as mentioned in the introduction, that also improve conservation properties
for least-square problems. These may involve reformulating the system or choosing
better finite-element spaces for the original FOSLS system. For instance, nonconform-
ing elements can be used that satisfy the mass conservation across interfaces much
better than the standard polynomial spaces used here [1, 15, 16, 23]. The goal of our
approach in the present paper is to show that the system can be solved as is, with
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no alterations to the original FOSLS method. Thus, it should be considered a robust
finite-element method for such systems which obtains physically accurate solutions ef-
ficiently. Care needs to be given in choosing the right spaces for the constraint system,
so that a stable method is obtained and the FOSLS functional retains its important
a posterior error estimator properties. However, since this post-processing is done on
local subdomains and/or on coarse-grids, only a fractional amount of computational
cost is added to the solution process. Future work involves implementing the above
algorithms in a multilevel way and including the coarse-space constraints in the local
subdomain process. Also, other applications such as Stokes flow and MHD is worth
considering.
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